Sistem Informasi Penentuan Kelompok Belajar Siswa SMK Negeri 2 Bandung Menggunakan Algoritma K-Means
Main Article Content
Abstract
Vocational High School (SMK) is a vocational secondary education level in formal education in Indonesia. Based on the 2003 National Education System Law concerning the objectives of secondary education, vocational students are prepared to enter the world of industry or the world of work. SMK students can choose one of the several majors available at of semester 2 of class X. The purpose of the majors is to help prepare students to continue their studies and choose the world of work so that they can help strengthen success and suitability for future achievements. Study groups are formed according to the abilities and suitability of students in their respective fields. The essence of the study groups is learning from each other where students can share knowledge and insights between students in a group. Therefore, it is necessary to develop a student learning grouping system based on certain criteria using clustering techniques. The clustering method is a method that will classify a number of data into groups so that each group contains data that is as similar as possible. The purpose of this clustering is to minimize the variation of members within one cluster and maximize member variation between clusters.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
[2] Rospigliosi and P. A., "Learning from each other. Journal Interactive Learning Environments.," 2016.
[3] Y. Yunefri, E. P. Pane and &. Sutejo, Pengembangan Sistem Pengelompokkan Belajar Mahasiswa Pada Mata Kuliah Struktur Data Dengan Metode K-Means, Jurnal Intecoms, 2019.
[4] Pradnyana, G. A., &. Permana and A. J., Perbandingan Algoritma K-Means dan Hybrid K-Means KNN untuk Pembagian Kelas Kuliah Mahasiswa, Buleleng: Universitas Pendidikan Ganesha, 2017.
[5] Poerwanto, B., &. Fa'rifah and R. Y., Analisis Cluster Menggunakan Algoritma k-Means, Jurnal Ilmiah Teknologi Informasi., 2016.
[6] Kusumadewi, S., &. Purnomo and H., Aplikasi Logika Fuzzy untuk Pendukung Keputusan, Yogyakarta: Graha Ilmu, 2010.
[7] Zahrotun and L., "Analisis Pengelompokan Jumlah Penumpang Bus Trans Jogja Menggunakan Metode Clustering K-Means dan Agglomerative Hierarchical Clustering," Jurnal Informatika, pp. 1039-1047, 2015.
[8] Jogiyanto and H. M., Analisis dan Desain., Yogyakarta: Andi, 2009.
[9] Sutarman., Pengantar Teknologi Informasi, Jakarta: Bumi Aksara, 2012.
[10] R. &. S. G. P. McLeod, Management Information Systems, 9th edition., 2004.
[11] Pressman and R. S., Software Engineering: A Practitioner's Approach, 7th Edition., New York: Mc Graw Hill., 2010.
[12] T. &. Y. N. Dunstone, Biometric System and Data Analysis, New York: Springer, 2009.
[13] Prasetyo and E., Data Mining., Yogyakarta: Andi, 2014.
[14] Aminudin, Prinsip-prinsip Riset Operasi, Jakarta: Erlangga, 2015.
[15] M. L. R. K. F. R. P. A. H. A. &. Z. Z. Hamzah, A Review of Increasing Teaching and Learning Database Subjects in Computer Science, Espacios, 2019.
[16] Han and J., Data Mining: Concepts and Techniques., Morgan Kaufmann, San Fransisco.
[17] Fowler and M., UML Distilled Second Edition., New York: Addison Wesley, 2005.
[18] Pradnyana, G. A., &. Permana and A. A., "SISTEM PEMBAGIAN KELAS KULIAH MAHASISWA DENGAN METODE K-MEANS DAN K-NEAREST NEIGHBORS UNTUK MENINGKATKAN KUALITAS PEMBELAJARAN.," Jurnal Ilmiah Teknologi Informasi, pp. 59-68, 2018.